Nano-MgO/AB decorated separator to suppress shuttle effect of lithium–sulfur battery
نویسندگان
چکیده
منابع مشابه
Effect of Graphene Oxide Decorated With Synthesized Nano-CeO2 on Barrier Properties of Epoxy Anticorrosion Coatings
In this paper, graphene oxide decorated with cerium oxide (CeO2) nanoparticles was prepared and used as anticorrosive pigments in epoxy nanocomposite coatings. The synthesized nanoparticle was characterized by FTIR, XRD, SEM, and EDX analyses. Graphene oxide decorated with CeO2 nanoparticles was dispersed in epoxy resin by sonication. The optimum nanoparticle content of th...
متن کاملA shuttle effect free lithium sulfur battery based on a hybrid electrolyte.
A room temperature hybrid electrolyte based lithium-sulfur cell was successfully cycled with an excellent coulombic efficiency of 100%. The initial discharge specific capacities of up to 1528 mA h g(-1), 1386 mA h g(-1) and 1341 mA h g(-1), respectively, at C/20, C/5 and C/2 rates were realized and remained at 720 mA h g(-1) after 40 cycles at the C/5 rate.
متن کاملVoltage-sustained self-oscillation of a nano-mechanical electron shuttle
One core challenge of nanoelectromechanical systems (NEMS) is their efficient actuation. A promising concept superseding resonant driving is self-oscillation. Here, we demonstrate voltage-sustained self-oscillation of a nanomechanical charge shuttle. Stable transport at 4.2 K is observed for billions of shuttling cycles, giving rise to ohmic current-voltage curves with a sharp dissipation thres...
متن کاملEffective bactericidal performance of silver-decorated titania nano-composites.
Transition metal oxide based disinfectants offer an effective approach for water purification. The present discovery found that silver (Ag) decorated titania (TiO(2)) nano-composites displayed high potency at 2.5 ppm within 4 h co-incubation, proved to be effective at 100% inactivation. The composite disinfectant was effective against both Gram-negative and Gram-positive bacteria, Escherichia c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale Advances
سال: 2019
ISSN: 2516-0230
DOI: 10.1039/c8na00420j